
International Journal of Computer Trends and Technology Volume 72 Issue 11, 8-16, November 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I11P102 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

AWS Event Driven Architecture

Gaurav Prabhakar

Senior Software Engineer, Application Architect, Tx, USA.

Corresponding Author : gauravprabhakar.engg@gmail.com

Received: 16 September 2024 Revised: 19 October 2024 Accepted: 08 November 2024 Published: 28 November 2024

Abstract - This document describes the implementation of Event-Driven Architecture (EDA) in Amazon Web Services (AWS).

EDA is important in technology regarding the machine’s operation, robustness, and efficiency. Given the importance of real-

time data processing and timely recommendations to users, EDA increases efficiency by allowing applications to respond to

events and check information in a timely manner. This model is particularly useful for microservices and serverless computing,

where independent services can generate and consume events, thus improving flexibility and control. EDA also improves fault

tolerance and load distribution, allowing the system to adapt to different operating and non-operating conditions. As companies

aim to deliver a consistent and personalized experience, EDA’s ability to quickly adapt and continuously integrate new

capabilities is critical.

Keywords - AWS, Event-driven, EDA, Pub-Sub, SNS, SQS.

1. Introduction
AWS Event Driven Architecture (EDA) uses events as a

trigger to help applications respond to actions or changes

autonomously. While traditional architectures struggle with

scalability and real-time data processing, a notable gap exists

in the efficient handling of unstructured data and seamless

integration of microservices. This creates a substantial gap for

a more scalable and loosely coupled application. The issue

comes with achieving the goals within the AWS landscape,

especially for modern applications utilizing microservices and

serverless computing. These challenges are addressed by EDA

where applications can be designed to react to the real-world

data streams in a timely and agile manner.

2. AWS Event-Driven Architecture
AWS Event-Driven Architecture (EDA), found within a

modern architecture Vue, is a pattern that uses events to

trigger actions and enable communication between decoupled

services, especially in microservices-based applications. By

using this approach, flexibility and scalability are much higher

as all components can respond dynamically to state changes

for example, when an item is added to the shopping cart in any

e-commerce application. An event in the messaging domain is

a substantial change of state or update, like a new user

registration or a change in inventory stock. Events may

include rich details about the change, or they may include

identifiers that systems can use to look up more data.An AWS

event message is structured like a JSON format with metadata

and details on the event. Here’s a general example of an AWS

event message structure:
{

 “version”: “0”,

 “id”: “unique-event-id”,

 “detail-type”: “event-type”,

 “source”: “event-source”,

 “account”: “account-id”,

 “time”: “timestamp”,

 “region”: “region”,

 “resources”: [“resource-arn”],

 “detail”: {

 "key1": "value1",

 "key2": "value2"

 }

}

Version: The version of the structure of the event.

id: A unique identifier for the event.

Detail-type: The type of event (e.g., “EC2 Instance State-

change Notification”).

Source: The service that generated the event (e.g., “aws.ec2”).

Account: The AWS account ID.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Gaurav Prabhakar / IJCTT, 72(11), 8-16, 2024

9

Time: The timestamp when the event occurred.

Region: The AWS region is the source of the event.

Resources: An array/list of resource ARNs participating

in the event.

Detail: A JSON object with additional information about the

event.

2.1. Key Components of Event-Driven Architecture

An event-driven architecture typically includes three

primary components:

2.1.1. Event Producers

These services produce and publish events to the event

router.

2.1.2. Event Routers

The router filters and routes events from the producers to

the various consumers. This way, the services remain

decoupled without any dependency on each other. The

following are some of the standard routing strategies-

1. Message Filtering: Events are filtered based on specific

criteria before being routed to the proper consumers.

2. Topic-Based Routing: Events publish to topics, and

consumers subscribe to the topics they are interested in.

3. Content-Based Routing: Events are routed based on

their content or payload.

4. Fan-Out Routing: One event is routed to multiple

consumers simultaneously.

5. Sequence-Based Routing: Events are routed based on

their sequence or order of arrival.

2.1.3. Event Consumers

These services receive and process events generated by

producers, enabling them to react to changes in the application

ecosystem.

Fig. 1 Components of Event-Driven Architecture

3. Benefits of AWS Event-Driven Architecture
Using AWS Event-Driven Architecture has many

advantages, including:

• Scalability: The services, such as AWS Lambda, can

automatically be scaled with the incoming volume of

events. This will let the applications handle bursts of

traffic without degradation in performance.

• Agility: It allows developers to innovate faster because

decoupled services reduce dependencies and allow

independent deployments.

• Cost Efficiency: The pay-as-you-go pricing model

reduces costs because only the time taken up in

computing due to incoming events is billed.

• Loose Coupling: EDA decouples services; hence, it

allows for scaling and updating independently. This

reduces the risk of cascading failures through a system.

• Improved Fault Tolerance: One failing service doesn’t

take the others down since they are not dependent on each

other.

3.1.Benefits of Event Driven Architecture (EDA) vs. Monol

ithic and Service Oriented Architecture (SOA)

EDA offers superior scalability, flexibility and real-time

capabilities, making it ideal for modern applications,while m

onolithic and SOA have their own specific advantages depen

ding on the use case.

3.1.1. EDA

• Scalability: Independently scalable component.

• Flexibility: Easy integration and replacement of compon

ents.

• Real-Time: Excellent for real-time data processing.

• Decoupling: Loosely coupled services improve fault iso

lation and maintenance.

3.1.2. Monolithic

• Simplicity: Easier initial development and deployment.

• Performance: Potentially better for small,

simple applications.

• Cost: Lower initial setup costs.

3.1.3. SOA

• Reusability: Services can be reused across applications.

• Integration: Better with enterprise systems.

• Granular Scaling: More fine-

grained than monolithic, less flexible than EDA.

• Centralized Governance: Simplifies compliance and m

anagement.

Event

producer
Event broker Event

consumer

Gaurav Prabhakar / IJCTT, 72(11), 8-16, 2024

10

4. Common Use Cases of Event Driven

Architecture
In general, event-driven architectures will be appropriate

solutions for a wide range of needs, which may include but are

not limited to the following:

• Microservices Communication: These enhance

interservice coordination in big applications.

• Automating Business Workflows: These automate

epetitive business processes based on events.

• Integrating SaaS Applications: Events connect various

SaaS products, unlock data silos, and operationalize

visibility.

Event-driven architecture turns out to be most useful

when rapid scale-up is demanded during periods of peak

demand, such as when event monitoring and alerting will be

needed, thus allowing immediate responses to changes in

resource states.

5. Implementing Event-Driven Architecture

with AWS
5.1. AWS provides Several Services to Enable and Empower

Event-Driven Architecture in Integrating and Processing

the Events Seamlessly, including the following

5.1.1. Amazon EventBridge

Amazon EventBridge is a serverless event bus service

that seamlessly connects application components by using

events. This allows for efficient event-driven workflows since

it can integrate several AWS services, SaaS applications, and

even custom events.

5.1.2. Amazon Simple Notification Service (SNS)

Amazon SNS is a fully managed messaging service that

allows users to publish messages to multiple subscribers in

one go and is well-suited for broadcast messaging.

5.1.3. Amazon Simple Queue Service (SQS)

This is the message queuing service that enables different

components to communicate in a decoupled manner, where a

producer can send messages and consumers can

asynchronously fetch those messages.

5.1.4. AWS Lambda

This allows running code without managing servers and

computes in response to events driven by various AWS

services, besides the ease of integration with EventBridge,

SNS and SQS to process incoming events directly.

5.1.5. Amazon Step Functions

A serverless orchestration service that allows the

coordination of multiple AWS services into workflows,

enhancing the management of complex event-driven

applications.

5.1.6. API Gateway

Amazon API Gateway is a fully managed service that

enables developers and companies to easily create, publish,

and manage APIs of applications.

5.1.7. AWS Kinesis

Amazon Kinesis Data Streams is a real-time, fully

managed service provided by AWS. It ingests massive streams

of data coming from thousands of sources and processes

gigabytes of data per second.

The data streams seamlessly integrate with other AWS

services to enable powerful data processing pipelines for

applications that require real-time analytics, log and event data

processing, and fraud detection. With use cases that demand

instant insight, Kinesis Data Streams scales to meet demand

to ensure timely, scalable and efficient data processing.

5.1.8. Amazon S3 Event Notifications

It is configurable to send notifications regarding events

on an S3 bucket, such as creating or deleting an object. Events

can then trigger other services like AWS Lambda.

5.1.9. Amazon DynamoDB Streams

Captures changes to DynamoDB tables, creating a time-

ordered sequence of events that can trigger AWS Lambda

functions for various real-time applications.

5.2. Common Patterns

This section outlines the foundational building blocks and

patterns commonly encountered in event-driven architecture.

These patterns allow for decoupled, asynchronous

communication between producers and consumers while

allowing for the unique characteristics that are increasingly

necessary to fulfill various application requirements.

5.2.1. Point-to-point messaging

Messages are typically consumed by one consumer in the

P2P pattern. The event broker often uses point-to-point

messaging. A queue is a messaging channel that enables

asynchronous communication between a sender and a

receiver. Services like SQS, Amazon MQ, and Aws Lambda

can commonly be used.

5.2.2. Pub/sub messaging

Whereas point-to-point messaging messages usually go to

just one consumer, with publish-subscribe messaging, you

have the possibility to really broadcast messages and send a

copy to each consumer. The event broker in these models is

frequently an event router. Unlike queues, event routers

typically don’t offer the persistence of events.

Gaurav Prabhakar / IJCTT, 72(11), 8-16, 2024

11

Fig. 2 Illustration of P2P Pattern

Fig. 3 Illustration of Publisher Subscriber Pattern

Fig. 4 Illustration of Event Bus Pattern

M1 M2 M1 M2

Ack Ack

Sender Receiver
Queue

M1 M1

Ack

Topic

Consumers

M1

M1 M2

Ack

Bus

Green?
M2

Blue?

Receiver

Green Blue

Blue

Green

Receiver

Sender

https://www.google.com/search?sca_esv=1d2fbb10e57e1f9d&sxsrf=ADLYWIJ7YKJXxwITtyrvZ_51I4LuZRGR_g:1731350405394&q=Publisher+Subscriber&spell=1&sa=X&ved=2ahUKEwjTqpTv9tSJAxXu78kDHbaFHEEQkeECKAB6BAgKEAE
https://www.google.com/search?sca_esv=1d2fbb10e57e1f9d&sxsrf=ADLYWIJ7YKJXxwITtyrvZ_51I4LuZRGR_g:1731350405394&q=Publisher+Subscriber&spell=1&sa=X&ved=2ahUKEwjTqpTv9tSJAxXu78kDHbaFHEEQkeECKAB6BAgKEAE

Gaurav Prabhakar / IJCTT, 72(11), 8-16, 2024

12

5.2.3.Event Bus

Yet another breed of event router is an event bus, which

provides for sophisticated routing logic. Whereas topics

broadcast all the messages received to subscribers, event buses

can filter the incoming flow of messages and forward them to

various consumers based on event attributes. Services like

Amazon Simple Notification Service are used to create topics,

and Amazon EventBridge is used to create event buses.

Services such as Amazon EventBridge support persisting

events via archive functionality. Amazon MQ also supports

topics and routing.

5.2.4. Event streaming
Another abstraction for producers and consumers is

through streams or continuous flows of events or data. Unlike

event routers, like queues, streams almost always involve the

consumer polling for new events. Consumers retain their own

filtering logic to decide what events to consume while

maintaining knowledge of their position in the stream. Event

streams are continuous flows of events that can be processed

individually or together over time. Event streaming is

represented by things such as the rideshare application, which

streams the changing locations of a customer as events. Each

“Location Updated” event exists as a meaningful data point

used to visually update a customer’s location on a map. It

could also analyze location events over time to provide

insights, such as the driver’s speed. Data streams differ from

event streams because they always interpret data over time. In

this model, individual data points or records aren’t

independently useful. Data streaming applications often

persist in the data after an optional enrichment or processing

of the data over a preset time to derive real-time analytics. IoT

device sensor data can be considered as one such example of

streaming. Individual sensor reading records may not be

valuable without context, but the records collected over a

period can tell a richer story. This includes Amazon Kinesis

Data Streams and Amazon Managed Streaming for Apache

Kafka for the event and data-streaming use cases.

5.2.5. Choreography and orchestration
There are two distinct models for how distributed services

can communicate with one another, namely choreography

versus orchestration. Orchestration controls communication

more tightly. A central service coordinates the interaction and

order in which services are invoked. Choreography achieves

communication without tight control; events flow between

services without centralized coordination. Many applications

will use both choreography and orchestration for different use

cases. Communication between bounded contexts is often

how choreography is used most effectively. With

choreography, producers don’t expect how and when the event

will be processed. Producers are only responsible for sending

events to an event ingestion service and adhering to the

schema. This reduces dependencies between the two bounded

contexts. In a bounded context, there is often the need to

control the sequence of service integrations, maintain the state,

and handle errors with retries. These use cases are better suited

for orchestration.

Event buses like Amazon EventBridge can help with

choreography, and workflow orchestration services such as

AWS Step Functions or Amazon Managed Workflows for

Apache Airflow (Amazon MWAA) can help you build

orchestration. Examples of how you might use choreography

and orchestration together could include sending an event to

trigger an AWS Step Functions workflow emitting events at

different steps.

Fig. 5 Event Stream Communication

Fig. 6 Choreography and Orchestration

M1 M2

Ack

Event stream

Consumer

s

Producer

Web service

Central Coordination

Web service

Web service

Web service Web service

Web service

Collaboration

Choreography Orchestration

Gaurav Prabhakar / IJCTT, 72(11), 8-16, 2024

13

5.2.6. Connecting Event Sources

Most applications receive events from external sources.

These might be SaaS applications, such as business

applications that run payroll, store records, or handle ticketing.

You can also ingest events from an existing application or

database running on-premises. Events from all these sources

can be used by event-driven architectures.

At the point when applications emit business events, one

common way to propagate the events is with the use of a

connector or message broker. Such connectors bridge SaaS

applications or on-premises sources, sending these events to

either a stream or router where consumers process them.

Amazon EventBridge partner event sources can send events

from integrated SaaS applications to your AWS applications.

Combining Patterns
While any single pattern may fulfill your needs, event-

driven architectures will frequently compose a set of patterns

that:

• Fan out to deliver the same message to multiple subscribers

of a single topic.

Fig. 7.1 Fan out Broadcasting

• Filter and route specific events to be forwarded to different

targets.

Fig. 7.2 Event-based Broadcasting

• Filter events and route them into a queue for persistence.

Fig. 7.3 Routing to Queue

• Orchestrate workflows and emit events at steps within the workflow.

Sender

M1

Amazon SNS

M1

M2

M3

AWS Lambda

Amazon SQS

Email

M1

M2

M3

Rule

Rule

Rule

AWS Step

Functions

Amazon Kinesis

Data Firehose

Amazon SNS

Amazon

Event Bridge

Amazon SQS

Gaurav Prabhakar / IJCTT, 72(11), 8-16, 2024

14

Fig. 7.4 Workflow Orchestration

5.3. Monitoring AWS Event-Driven Architecture

Measuring and monitoring the performance of AWS

Event-Driven Architecture (EDA) systems is crucial for

ensuring they operate efficiently and effectively. Here are

some key practices and tools to consider:

5.3.1. Key Metrics

Latency: Time from event creation to processing.

Throughput: Events processed per time unit.

Error Rates: Failed event processing attempts.

Resource Utilization: CPU, memory, network usage.

Characteristics of Achmad Noe'man's Mosque Period

1964-2010 Events waiting to be processed.

5.3.2. AWS Tools

Amazon CloudWatch: Collects and tracks metrics and se

ts alarms.

AWS X-Ray: Traces and analyzesrequests through services.

CloudWatch Logs: Collects and analyzes log files.

Lambda Metrics: Monitors serverless function metrics.

Best Practices

Set Up Alerts: Notifications for performance issues.

Regular Metric Reviews: Identify trends and improvement.

Accounts

Customer Service

Start

Check name and address Agency security clearance

Identity check completed

Verify risk profile

Approve or decline

Update risk profile

New account approved

Succeeded

New account declined

Failed

End

New account requested

identity check

completed

New

account

declined

Central

event bus

New

account

approved

1

2

3

4

5

Know your customer (KYC) workflow

Gaurav Prabhakar / IJCTT, 72(11), 8-16, 2024

15

Use Dashboards:Visualize key metrics for a quick overview.

Implement Logging: Comprehensive event and error logs.

Optimize Resources: Ensure efficient resource allocation.

This ensures your AWS EDA systems run smoothly and

efficiently.

5.4 Error Handling and Retry Mechanisms
Effective error handling and retry mechanisms are crucial

for managing event failures and ensuring data integrity in an

AWS Event-Driven Architecture (EDA).

5.4.1. Error Handling

1. Dead Letter Queues (DLQs): Capture failed messages

for later review.

2. Error Logging: Use CloudWatch Logs to capture and a

nalyze errors.

3. Error Notifications:Use SNS to send alerts when errors

occur.

5.4.2. Retry Mechanisms

1. Automatic Retries: Built-

in retries in services like Lambda and Step Functions.

2. Exponential Backoff: Gradually increase wait time bet

weenretries to reduce system load.

3. Idempotency: Ensure multiple identical requests have t

he same effect as a single request.

5.4.3. Data Integrity

1. Transaction Management: Use DynamoDB Transactio

ns to ensure all operations succeed or fail together.

2. Data Validation: Validate data before processing.

3. Versioning: Use S3 Versioning to maintain multiple ver

sions of objects.

6. Security Best Practices
Implementing robust security measures is crucial for

ensuring the integrity and confidentiality of your AWS EDA.

Here are some best practices to consider:

Authentication and Authorization

• Use IAM roles and policies to control access.

• Implement Multi-Factor Authentication (MFA).

Data Protection

• Encrypt data at rest and in transit.

• Regularly back up data and ensure robust recovery plan.

Network Security

• Use VPC and subnets for network isolation.

• Implement security groups and NACLs for traffic contro

l.

Monitoring and Logging

• Use CloudTrail for logging AWS API calls.

• Monitor and alert with CloudWatch.

Regular Updates and Patching

• Keep systems up to date with patches.

• Conduct regular security assessments.

7. Case Study
A logistics company faced significant challenges

managing millions of daily logistics events, such as

transporting parcels, making deliveries, and collecting

signatures. Traditional methods struggled with the volume and

complexity of these events, leading to inefficiencies and high

operational costs. By implementing an event-driven

architecture on AWS, the company overcame these issues by

building a centralized integration solution using AWS

Lambda, Amazon Simple Queue Service (SQS), and Amazon

EventBridge.

7.1. Problem Definition

The company’s existing architecture was heavily

dependent on manual interventions and a batch-processing

approach, causing delays and data silos. This made it difficult

to scale operations, respond to real-time events, and integrate

new services swiftly.

7.2. Implementation

The company transitioned to an event-driven approach
by identifying key events in its logistics process, such as
parcel pickup, delivery status updates, and signature
collections. They then created event producers for each event
type. These events were captured and routed through Amazon
EventBridge, which acted as the central hub for event
processing.

AWS Lambda functions were used to handle these events

in real time, performing tasks such as updating the delivery
status, sending notifications to customers, and triggering
further actions in other parts of the system. Amazon SQS was
employed to buffer events, ensuring they were processed even
if the downstream services experienced temporary failures.

7.3. Results

This transition to an event-driven architecture brought

several significant improvements.

7.4. Scalability

 The system could now handle peak loads effortlessly,

dynamically scaling up and down based on the event volume.

Gaurav Prabhakar / IJCTT, 72(11), 8-16, 2024

16

7.5. Real-time Processing

Events were processed as they occurred, reducing delays and

enhancing operational efficiency.

7.6. Cost Savings

By utilizing serverless services like AWS Lambda, the

company reduced its infrastructure costs significantly, only

paying for what they used.

7.7. Flexibility

New services and features could be added easily without

disrupting the existing workflow, thanks to the decoupled

nature of the architecture.

7.8. Enhanced Customer Experience

Customers received real-time delivery updates,

improving satisfaction and trust in the service. The successful

implementation of an event-driven architecture allowed the

logistics company to improve its operations significantly,

demonstrating the powerful capabilities of AWS EDA in a

practical, real-world scenario.

8. Costing
Here’s a table summarizing the estimated costs for a gen

eral AWS event-driven architecture:

These costs are approximate and can vary based on your

specific usage and configuration. For a more detailed estimat

e, you can use the AWS Pricing Calculator.

9. Upcoming Challenges and Trends in Event-
Driven Architecture
9.1. Challenges in EDA

• Complexity: Managing events and tracing their flow can

be difficult.

• Consistency: Ensuring correct event order and system

integrity.

• Suitability: It may be overkill for simple, non-real-time

tasks.

• Transition: Moving to EDA requires new skills and tools.

• Debugging Complexity: Errors can be difficult to trace

in event-driven systems due to the distributed nature of

service interactions.

• Variable Latency: Unlike traditional systems, event-

driven architectures may experience latency due to

network communication, which can complicate real-time

processing needs.

9.2. Trends in EDA

• Real-Time Data: Growing need for immediate data

processing.

• API-Driven: APIs central to communication between

services.

• Microservices & Serverless: Preferred for decoupling

services.

• Total Experience: Integrating multiple experience layers

to improve business outcomes.

9.3. AI/ML Integration

• Real-Time: AI models react to events in real time.

• Scalability: Modular design supports scalable AI

components.

• Flexibility: Seamless integration of various AI models.

• Decision Making: Triggering AI/ML for real-time

analysis.

10. Summary
Event-driven architecture facilitates the development of

scalable, flexible, and decoupled applications that can respond

dynamically to changes, although implementing EDA requires

consideration of its inherent complexities and challenges.

Table 1. Cost Estimates

Service Description Estimated Cost

Amazon S3 Storage for event data and logs $0.023 per GB-month

Amazon SQS Message queue for decoupling components $0.50 per million messages sent

Amazon SNS Publish/subscribe messaging service $0.50 per million notifications

Amazon Lambda Serverless compute for processing events $0.20 per million requests

Amazon DynamoDB NoSQL database for storing event data $0.25 per GB-month

Amazon Kinesis Real-time datastreaming service $1.00 per GB of data processed

Amazon EventBridge Event routing and processing $0.50 per million rules

Amazon CloudWatch Monitoring and logging service $0.10 per million metric data points

References
[1] What is an Event-Driven Architecture?, AWS Amazon. [Online]. Available: https://aws.amazon.com/event-driven-architecture/

[2] Sudarkodi Muthiah, Event-Driven Architecture Solutions on AWS, Medium. [Online]. Available:

https://medium.com/@sudarkodimuthiah22/event-driven-architecture-solutions-on-aws-bc90ccc55dc8

[3] Building Event-Driven Architectures with AWS, Amazon Web Service, pp. 1-21, 2022. [Online]. Available:

https://d1.awsstatic.com/SMB/building-event-driven-architectures-aws-guide-2022-smb-build-websites-and-apps-resource.pdf

